On Shafer and Carlson Inequalities

نویسندگان

  • Chao-Ping Chen
  • Wing-Sum Cheung
  • Wusheng Wang
  • Martin Bohner
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities for Hyperbolic Functions and Their Applications

In the study by Zhu in 1 , a basic theorem is established and found to be a source of inequalities for circular functions, and these inequalities are extended by this basic theorem. In what follows we are going to present the counterpart of these results for the hyperbolic functions. In this paper, we first establish the following Cusa-type inequalities in exponential type for hyperbolic functi...

متن کامل

SHAFER–FINK TYPE INEQUALITIES FOR THE ELLIPTIC FUNCTION sn(u|k) A. MCD. MERCER

The inequalities of Shafer and Fink, namely, 3x 2 + √ 1 − x2 sin −1(x) πx 2 + √ 1 − x2 , x ∈ [0, 1) are generalized to similar inequalities for the elliptic function sn(u|k) .

متن کامل

Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function

In this paper, we give some sharper refinements and generalizations of inequalities related to Shafer-Fink's inequality for the inverse sine function stated in Theorems 1, 2, and 3 of Bercu (Math. Probl. Eng. 2017: Article ID 9237932, 2017).

متن کامل

One-dimensional Interpolation Inequalities, Carlson–landau Inequalities and Magnetic Schrödinger Operators

In this paper we prove refined first-order interpolation inequalities for periodic functions and give applications to various refinements of the Carlson–Landau-type inequalities and to magnetic Schrödinger operators. We also obtain Lieb-Thirring inequalities for magnetic Schrödinger operators on multi-dimensional cylinders.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011